论文标题

自主机器人导航的深度积极推断

Deep Active Inference for Autonomous Robot Navigation

论文作者

Çatal, Ozan, Wauthier, Samuel, Verbelen, Tim, De Boom, Cedric, Dhoedt, Bart

论文摘要

主动推断是一种基于生物剂在现实世界中的感知和行动的方式的理论。主动推论的核心是基于以下原则:大脑是近似贝叶斯推理引擎,建立了内部生成模型,以推动代理人的惊喜最小。尽管该理论在认知神经科学的基础上显示了有趣的结果,但其应用仍限于具有小的,预定义的传感器和状态空间的模拟。 在本文中,我们利用了深度学习的最新进展来构建更复杂的生成模型,这些模型可以在没有预定义的状态空间的情况下起作用。从现实世界中的高维感官数据(例如相机框架)端对端学习了状态表示。我们还表明,这些生成模型可用于进行主动推断。据我们所知,这是针对现实世界机器人导航任务进行深度积极推断的首次应用。

Active inference is a theory that underpins the way biological agent's perceive and act in the real world. At its core, active inference is based on the principle that the brain is an approximate Bayesian inference engine, building an internal generative model to drive agents towards minimal surprise. Although this theory has shown interesting results with grounding in cognitive neuroscience, its application remains limited to simulations with small, predefined sensor and state spaces. In this paper, we leverage recent advances in deep learning to build more complex generative models that can work without a predefined states space. State representations are learned end-to-end from real-world, high-dimensional sensory data such as camera frames. We also show that these generative models can be used to engage in active inference. To the best of our knowledge this is the first application of deep active inference for a real-world robot navigation task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源