论文标题
在独立随机变量总和上,小偏差的边界概率:力矩接近和浆果定理的组合
Bounding probability of small deviation on sum of independent random variables: Combination of moment approach and Berry-Esseen theorem
论文作者
论文摘要
在小偏差的界限概率的背景下,通用工具有限。但是,此类界限已被广泛应用于图理论和库存管理。我们引入了一种常见的方法,通过结合矩问题的半决赛优化方法和浆果 - 埃森定理,从而实质性地增强了这种不平等范围。作为一种应用,我们将Feige猜想的下限从0.14提高到0.1798。
In the context of bounding probability of small deviation, there are limited general tools. However, such bounds have been widely applied in graph theory and inventory management. We introduce a common approach to substantially sharpen such inequality bounds by combining the semidefinite optimization approach of moments problem and the Berry-Esseen theorem. As an application, we improve the lower bound of Feige's conjecture from 0.14 to 0.1798.