论文标题

基于神经网络的原型声音综合框架

A Neural Network Based Framework for Archetypical Sound Synthesis

论文作者

Guizzo, Eric, Novello, Alberto

论文摘要

本文介绍了一种算法的初步方法,可以重现人类对声音进行分类的原型结构。特别是,我们提出了一种方法,以在声音中预测人类感知的混乱/秩序水平,并综合新的稍微呈现此功能所需数量的时间。我们采用了一种基于神经网络的方法,以利用其内部倾向来模拟感知和抽象的特征。我们最终讨论了在创造性环境中获得的准确性和可能的​​含义。

This paper describes a preliminary approach to algorithmically reproduce the archetypical structure adopted by humans to classify sounds. In particular, we propose an approach to predict the human perceived chaos/order level in a sound and synthesize new timbres that present the desired amount of this feature. We adopted a Neural Network based method, in order to exploit its inner predisposition to model perceptive and abstract features. We finally discuss the obtained accuracy and possible implications in creative contexts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源