论文标题
用于模拟流中细胞的高弹性模型
A hyperelastic model for simulating cells in flow
论文作者
论文摘要
在3D生物打印的新兴领域中,由于大变形而引起的细胞损伤被认为是细胞死亡和印刷构建体内部功能丧失的主要原因。这些变形反过来很大程度上取决于细胞对印刷过程中流体动力应力的机械弹性响应。在这项工作中,我们提出了一个数值模型,以模拟任意三维流中生物细胞的变形。根据热弹性的摩noy-rivlin模型,我们将细胞视为弹性连续体。然后,我们在四面化体积网格上使用力计算。为了校准我们的模型,我们使用REF52单元进行了一系列流体FMFM(R)压缩实验,表明Mooney-Rivlin模型的所有三个参数都是对实验数据的良好描述,该实验数据在非常大的变形时进行了良好的描述,最高为80%。此外,我们通过将牛内皮细胞和人造水凝胶颗粒上的AFM实验进行比较来验证该模型。为了研究流量中的细胞变形,我们将模型通过沉浸式边界算法纳入晶格玻尔兹曼模拟中。在线性剪切流中,我们的模型与分析计算和先前的仿真数据表现出了极好的一致性。
In the emerging field of 3D bioprinting, cell damage due to large deformations is considered a main cause for cell death and loss of functionality inside the printed construct. Those deformations, in turn, strongly depend on the mechano-elastic response of the cell to the hydrodynamic stresses experienced during printing. In this work, we present a numerical model to simulate the deformation of biological cells in arbitrary three-dimensional flows. We consider cells as an elastic continuum according to the hyperelastic Mooney-Rivlin model. We then employ force calculations on a tetrahedralized volume mesh. To calibrate our model, we perform a series of FluidFM(R) compression experiments with REF52 cells demonstrating that all three parameters of the Mooney-Rivlin model are required for a good description of the experimental data at very large deformations up to 80%. In addition, we validate the model by comparing to previous AFM experiments on bovine endothelial cells and artificial hydrogel particles. To investigate cell deformation in flow, we incorporate our model into Lattice Boltzmann simulations via an Immersed-Boundary algorithm. In linear shear flows, our model shows excellent agreement with analytical calculations and previous simulation data.