论文标题

在上下文客观框架中完成量子形式主义

Completing the quantum formalism in a contextually objective framework

论文作者

Grangier, Philippe

论文摘要

在标准量子力学(QM)中,国家向量$ |一旦希尔伯特空间的尺寸$ n $,ψ\ rangle $可能属于许多不同的正交基础,至少三个。另一方面,完全可观察的$ a $(剩下没有堕落)与特征向量的$ n $尺寸正交基础有关。在理想情况下,一次又一次地衡量$ a $将反复给出相同的结果,并具有相同的特征值。让我们将此可重复的结果称为方式$μ$,而相应的特征态$ | ψ\ rangle $。那是一个问题:$ | ψ\ rangle $给出了$μ$的完整描述? 答案显然是否定的,因为$ | ψ\ rangle $没有指定使我们获得$μ$的完整可观察的$ a $;因此,$ |给出的物理描述如爱因斯坦,波多尔斯基和罗森在1935年的著名文章中所声称的那样,ψ\ rangle $是不完整的。在这里,我们想阐明这种挑衅性的陈述,尤其是要回答问题:如果$ | ψ\ rangle $是$μ$的不完整描述,它描述了什么?是否有可能获得完整的描述,也许是代数?我们的结论是,标准QM的不完整是由于它试图描述没有上下文的系统,而两者总是需要,即使它们可以在测量周期之外分开。

In standard quantum mechanics (QM), a state vector $| ψ\rangle$ may belong to infinitely many different orthogonal bases, as soon as the dimension $N$ of the Hilbert space is at least three. On the other hand, a complete physical observable $A$ (with no degeneracy left) is associated with a $N$-dimensional orthogonal basis of eigenvectors. In an idealized case, measuring $A$ again and again will give repeatedly the same result, with the same eigenvalue. Let us call this repeatable result a modality $μ$, and the corresponding eigenstate $| ψ\rangle$. A question is then: does $| ψ\rangle$ give a complete description of $μ$ ? The answer is obviously no, since $| ψ\rangle$ does not specify the full observable $A$ that allowed us to obtain $μ$; hence the physical description given by $| ψ\rangle$ is incomplete, as claimed by Einstein, Podolsky and Rosen in their famous article in 1935. Here we want to spell out this provocative statement, and in particular to answer the questions: if $| ψ\rangle$ is an incomplete description of $μ$, what does it describe ? is it possible to obtain a complete description, maybe algebraic ? Our conclusion is that the incompleteness of standard QM is due to its attempt to describe systems without contexts, whereas both are always required, even if they can be separated outside the measurement periods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源