论文标题
$ \ Mathcal {n} = 4 $ super yang-mills和$ \ Mathcal {n} = 8 $ supergravity中的两循环五点振幅的多型限制
Multi-Regge Limit of the Two-Loop Five-Point Amplitudes in $\mathcal{N} = 4$ Super Yang-Mills and $\mathcal{N} = 8$ Supergravity
论文作者
论文摘要
在以前的工作中,在$ \ Mathcal {n} = 4 $ Super Yang-Mills理论和$ \ Mathcal {n} = 8 $ SuperGravity中的两环五点振幅是在符号级别计算的。在本文中,我们计算完整的功能形式。使用物理散射区域中两环五角大楼积分的分析表达式组装并简化了幅度。我们提供显式功能表达式和散射区域中的数值参考点。然后,我们计算两个振幅的多重点极限。结果是根据明确的先验功能基础编写的。对于$ \ MATHCAL {N} = 4 $ SUPER YANG-MILLS振幅的某些非平面色结构,我们基于BFKL有效理论执行独立计算。我们找到了完美的共识。我们评论振幅的分析特性。
In previous work, the two-loop five-point amplitudes in $\mathcal{N}=4$ super Yang-Mills theory and $\mathcal{N}=8$ supergravity were computed at symbol level. In this paper, we compute the full functional form. The amplitudes are assembled and simplified using the analytic expressions of the two-loop pentagon integrals in the physical scattering region. We provide the explicit functional expressions, and a numerical reference point in the scattering region. We then calculate the multi-Regge limit of both amplitudes. The result is written in terms of an explicit transcendental function basis. For certain non-planar colour structures of the $\mathcal{N}=4$ super Yang-Mills amplitude, we perform an independent calculation based on the BFKL effective theory. We find perfect agreement. We comment on the analytic properties of the amplitudes.