论文标题

通过有限的数据进行信息提取的转移学习

Transfer Learning for Information Extraction with Limited Data

论文作者

Nguyen, Minh-Tien, Phan, Viet-Anh, Linh, Le Thai, Son, Nguyen Hong, Dung, Le Tien, Hirano, Miku, Hotta, Hajime

论文摘要

本文提出了一种实用的方法来提取细粒度。通过作者实际上将信息提取到业务流程自动化中的大量经验,可以发现一些基本的技术挑战:(i)标记数据的可用性通常受到限制,并且(ii)需要高度详细的分类。我们建议的主要思想是利用转移学习的概念,即重复使用深神经网络的预训练模型,并结合常见的统计分类器来确定每个提取术语的类别。为此,我们首先利用BERT来应对实际场景中培训数据的局限性,然后用卷积神经网络堆叠BERT,以学习隐藏的表示形式进行分类。为了验证我们的方法,我们将模型应用于文档处理的实际情况,这是日本政府项目的竞争性竞标过程。我们使用了100个文档进行培训和测试,并确认该模型可以提取具有针对性业务流程的详细信息精确度的详细信息级别的命名实体,例如应用程序接收器的部门名称。

This paper presents a practical approach to fine-grained information extraction. Through plenty of experiences of authors in practically applying information extraction to business process automation, there can be found a couple of fundamental technical challenges: (i) the availability of labeled data is usually limited and (ii) highly detailed classification is required. The main idea of our proposal is to leverage the concept of transfer learning, which is to reuse the pre-trained model of deep neural networks, with a combination of common statistical classifiers to determine the class of each extracted term. To do that, we first exploit BERT to deal with the limitation of training data in real scenarios, then stack BERT with Convolutional Neural Networks to learn hidden representation for classification. To validate our approach, we applied our model to an actual case of document processing, which is a process of competitive bids for government projects in Japan. We used 100 documents for training and testing and confirmed that the model enables to extract fine-grained named entities with a detailed level of information preciseness specialized in the targeted business process, such as a department name of application receivers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源