论文标题
TensorFlow量子:量子机学习的软件框架
TensorFlow Quantum: A Software Framework for Quantum Machine Learning
论文作者
论文摘要
我们引入了Tensorflow量子(TFQ),这是一个开源库,用于快速原型用于经典或量子数据的混合量子古典模型。该框架提供了高水平的抽象,用于在张力流下设计和培训判别和生成量子模型,并支持高性能量子电路模拟器。我们通过几个示例提供了软件体系结构和构建块的概述,并回顾了混合量子古典神经网络的理论。我们通过多种基本应用说明了TFQ功能,包括监督量子分类,量子控制,模拟噪声量子电路和量子近似优化的学习。此外,我们演示了如何应用TFQ来解决高级量子学习任务,包括元学习,层次学习,哈密顿学习,采样热状态,变异量子量化特征体,量子相变的分类,生成的对抗网络和增强助力学习。我们希望该框架为量子计算和机器学习研究社区提供必要的工具,以探索自然和人造量子系统的模型,并最终发现可能产生量子优势的新量子算法。
We introduce TensorFlow Quantum (TFQ), an open source library for the rapid prototyping of hybrid quantum-classical models for classical or quantum data. This framework offers high-level abstractions for the design and training of both discriminative and generative quantum models under TensorFlow and supports high-performance quantum circuit simulators. We provide an overview of the software architecture and building blocks through several examples and review the theory of hybrid quantum-classical neural networks. We illustrate TFQ functionalities via several basic applications including supervised learning for quantum classification, quantum control, simulating noisy quantum circuits, and quantum approximate optimization. Moreover, we demonstrate how one can apply TFQ to tackle advanced quantum learning tasks including meta-learning, layerwise learning, Hamiltonian learning, sampling thermal states, variational quantum eigensolvers, classification of quantum phase transitions, generative adversarial networks, and reinforcement learning. We hope this framework provides the necessary tools for the quantum computing and machine learning research communities to explore models of both natural and artificial quantum systems, and ultimately discover new quantum algorithms which could potentially yield a quantum advantage.