论文标题

从透视X射线成像到视差射击式缝线

From Perspective X-ray Imaging to Parallax-Robust Orthographic Stitching

论文作者

Fotouhi, Javad, Liu, Xingtong, Armand, Mehran, Navab, Nassir, Unberath, Mathias

论文摘要

在透视图投影几何形状下获取的缝线图像是计算机视觉中的一个相关主题,其多个应用程序从智能手机全景到数字地图的构建。图像缝合是医学成像中同样突出的挑战,在该成像中,通过单个图像捕获的有限视野禁止对患者解剖结构进行整体分析。防止2D图像的直线镶嵌的屏障是由于视差引起的深度不匹配。在这项工作中,我们利用X射线图像形成的基本原理利用傅立叶切片定理从无视差域中的多个传输图像中汇总信息。使用一种新颖的深度学习策略来恢复缝合图像的语义,该策略利用围绕频率以及密集和稀疏的空间图像内容设计的相似性度量。我们的管道不仅缝制了图像,还提供了拼字化重建,可以直接在2D图像平面上直接对临床相关数量进行度量测量。

Stitching images acquired under perspective projective geometry is a relevant topic in computer vision with multiple applications ranging from smartphone panoramas to the construction of digital maps. Image stitching is an equally prominent challenge in medical imaging, where the limited field-of-view captured by single images prohibits holistic analysis of patient anatomy. The barrier that prevents straight-forward mosaicing of 2D images is depth mismatch due to parallax. In this work, we leverage the Fourier slice theorem to aggregate information from multiple transmission images in parallax-free domains using fundamental principles of X-ray image formation. The semantics of the stitched image are restored using a novel deep learning strategy that exploits similarity measures designed around frequency, as well as dense and sparse spatial image content. Our pipeline, not only stitches images, but also provides orthographic reconstruction that enables metric measurements of clinically relevant quantities directly on the 2D image plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源