论文标题
使用熵平衡权重进行连续暴露
Nonparametric Estimation of Population Average Dose-Response Curves using Entropy Balancing Weights for Continuous Exposures
论文作者
论文摘要
加权估计器通常用于估计观察环境中的暴露效应以建立因果关系。当关注兴趣是二进制时,并且权重通常是估计倾向评分的功能时,这些估计器的发展历史悠久。基于优化的估计量的最新进展,用于在二进制暴露设置中构建权重的估计值,例如基于熵平衡的估计,比使用基于可能性的方法直接估算倾向得分的方法比估计治疗效应的估计效果更有希望。本文探讨了熵平衡方法的最新发展,即连续暴露环境以及使用非参数估计的人口剂量响应曲线的估计,结合了熵平衡的重量,重点是对医疗或健康服务研究中应用研究人员重要的因素。此处开发的方法应用于一项研究的数据,该研究评估了基于证据的物质使用治疗计划对情绪和药物使用临床结果的非随机组件的影响。
Weighted estimators are commonly used for estimating exposure effects in observational settings to establish causal relations. These estimators have a long history of development when the exposure of interest is binary and where the weights are typically functions of an estimated propensity score. Recent developments in optimization-based estimators for constructing weights in binary exposure settings, such as those based on entropy balancing, have shown more promise in estimating treatment effects than those methods that focus on the direct estimation of the propensity score using likelihood-based methods. This paper explores recent developments of entropy balancing methods to continuous exposure settings and the estimation of population dose-response curves using nonparametric estimation combined with entropy balancing weights, focusing on factors that would be important to applied researchers in medical or health services research. The methods developed here are applied to data from a study assessing the effect of non-randomized components of an evidence-based substance use treatment program on emotional and substance use clinical outcomes.