论文标题
准同质傅立叶lebesgue空间中非线性PDE的微局部规律性
Microlocal regularity of nonlinear PDE in quasi-homogeneous Fourier Lebesgue spaces
论文作者
论文摘要
我们研究了一类伪差的运算符的加权傅立叶Lebesgue空间的连续性,它们的符号相对于$ x $具有有限的傅立叶lebesgue规律性,并满足了$ξ$可变的准衍生物衰减。给出了线性和非线性偏微分方程的傅里叶勒布斯格微局部规律性的应用。
We study the continuity in weighted Fourier Lebesgue spaces for a class of pseudodifferential operators, whose symbol has finite Fourier Lebesgue regularity with respect to $x$ and satisfies a quasi-homogeneous decay of derivatives with respect to the $ξ$ variable. Applications to Fourier Lebesgue microlocal regularity of linear and nonlinear partial differential equations are given.