论文标题

优化针对分类网络的JPEG量化

Optimizing JPEG Quantization for Classification Networks

论文作者

Li, Zhijing, De Sa, Christopher, Sampson, Adrian

论文摘要

计算机视觉的深度学习取决于有损的图像压缩:它减少了培训和测试数据所需的存储,并降低了部署的转移成本。主流数据集和成像管道都取决于标准的JPEG压缩。在JPEG中,频率系数的量化程度控制着损失:A 8 x 8量化表(Q-table)决定了编码图像的质量和压缩比。虽然悠久的工作历史已寻求更好的Q桌,但现有的工作要么试图最大程度地减少图像失真,要么为人类视觉系统的模型进行优化。这项工作询问JPEG Q-table是否存在对特定视觉网络“更好”,并且比为人类的感知或最小的失真提供了更好的质量折衷。我们重建具有更高分辨率的成像网测试集,以探索新型Q-tables下JPEG压缩的效果。我们尝试采用几种方法来调整Q桌子以进行视觉任务。我们发现一种简单排序的随机抽样方法可以超过标准JPEG Q-table的性能。我们还使用高参数调谐技术,包括有限的随机搜索,贝叶斯优化和复合启发式优化方法。当固定精度固定时,我们获得的新Q表可以将压缩率提高10%至200%,或以相同的压缩率提高准确性高达$ 2 \%$。

Deep learning for computer vision depends on lossy image compression: it reduces the storage required for training and test data and lowers transfer costs in deployment. Mainstream datasets and imaging pipelines all rely on standard JPEG compression. In JPEG, the degree of quantization of frequency coefficients controls the lossiness: an 8 by 8 quantization table (Q-table) decides both the quality of the encoded image and the compression ratio. While a long history of work has sought better Q-tables, existing work either seeks to minimize image distortion or to optimize for models of the human visual system. This work asks whether JPEG Q-tables exist that are "better" for specific vision networks and can offer better quality--size trade-offs than ones designed for human perception or minimal distortion. We reconstruct an ImageNet test set with higher resolution to explore the effect of JPEG compression under novel Q-tables. We attempt several approaches to tune a Q-table for a vision task. We find that a simple sorted random sampling method can exceed the performance of the standard JPEG Q-table. We also use hyper-parameter tuning techniques including bounded random search, Bayesian optimization, and composite heuristic optimization methods. The new Q-tables we obtained can improve the compression rate by 10% to 200% when the accuracy is fixed, or improve accuracy up to $2\%$ at the same compression rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源