论文标题

使用概率张量流的路径计划

Path Planning Using Probability Tensor Flows

论文作者

Palmieri, Francesco A. N., Pattipati, Krishna R., Fioretti, Giovanni, Di Gennaro, Giovanni, Buonanno, Amedeo

论文摘要

文献中已经提出了概率模型,以在许多情况下说明“智能”行为。在本文中,在包括目标和障碍的潜在复杂情况下,将概率传播应用于模型代理的运动。向后流提供了代理行为的宝贵背景信息,即来自未来的推论决定了代理商的行动。概率张量以类似于卷积神经网络的方式在两个方向上分层。讨论是参考一组模拟网格进行的,尽管任务复杂,但总是可以找到解决方案,但总是可以找到解决方案。 Attias提出的原始模型已扩展到包括非吸收障碍,多个目标和多个代理。新兴的行为非常现实,并展示了将该框架应用于真实环境的巨大潜力。

Probability models have been proposed in the literature to account for "intelligent" behavior in many contexts. In this paper, probability propagation is applied to model agent's motion in potentially complex scenarios that include goals and obstacles. The backward flow provides precious background information to the agent's behavior, viz., inferences coming from the future determine the agent's actions. Probability tensors are layered in time in both directions in a manner similar to convolutional neural networks. The discussion is carried out with reference to a set of simulated grids where, despite the apparent task complexity, a solution, if feasible, is always found. The original model proposed by Attias has been extended to include non-absorbing obstacles, multiple goals and multiple agents. The emerging behaviors are very realistic and demonstrate great potentials of the application of this framework to real environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源