论文标题
时空自适应ADER不连续的Galerkin方案,用于非线性超弹性,材料故障
Space-time adaptive ADER discontinuous Galerkin schemes for nonlinear hyperelasticity with material failure
论文作者
论文摘要
我们关注的是连续力学的统一一阶双曲配方的数值解决方案,该方法源自Godunov,Peshkov和Romenski(GPR模型)的工作,并且是非线性超弹性性的扩展,它能够同时描述大型应变的非线性弹性固体,以及大型型应变和理想的blyids。提出的理事PDE系统还包含热传导的效果,并且可以证明是对称的,并且在热力学上兼容。 在本文中,我们通过在管理PDE系统中添加一个新的标量变量,将GPR模型扩展到非线性动态破裂过程和材料疲劳效应的模拟。该额外的参数描述了材料损伤,并受对流反应方程的控制,其中僵硬且高度非线性的反应机制取决于局部von Mises应力与材料屈服应力的比率。僵硬的反应机制通过有效的指数时间积分器在时间内整合。由于多个时空尺度,该模型使用具有后验子细胞有限体积限制的高阶不连续的Galerkin有限元元件方案在时空自适应笛卡尔网上求解。 我们新模型的一个关键特征是使用双重分散界面方法,该方法允许裂缝在任何地方,随时都独立于所选的计算网格而形成,而无需知道破裂故障的几何形状是先验的。此外,我们还利用标量音量分数函数,该函数指示给定点是在固体内还是外部,从而描述了任意复杂形状的固体。
We are concerned with the numerical solution of a unified first order hyperbolic formulation of continuum mechanics that originates from the work of Godunov, Peshkov and Romenski (GPR model) and which is an extension of nonlinear hyperelasticity that is able to describe simultaneously nonlinear elasto-plastic solids at large strain, as well as viscous and ideal fluids. The proposed governing PDE system also contains the effect of heat conduction and can be shown to be symmetric and thermodynamically compatible. In this paper we extend the GPR model to the simulation of nonlinear dynamic rupture processes and material fatigue effects, by adding a new scalar variable to the governing PDE system. This extra parameter describes the material damage and is governed by an advection-reaction equation, where the stiff and highly nonlinear reaction mechanisms depend on the ratio of the local von Mises stress to the yield stress of the material. The stiff reaction mechanisms are integrated in time via an efficient exponential time integrator. Due to the multiple space-time scales, the model is solved on space-time adaptive Cartesian meshes using high order discontinuous Galerkin finite element schemes with a posteriori subcell finite volume limiting. A key feature of our new model is the use of a twofold diffuse interface approach that allows the cracks to form anywhere and at any time, independently of the chosen computational grid, without requiring that the geometry of the rupture fault be known a priori. We furthermore make use of a scalar volume fraction function that indicates whether a given point is inside the solid or outside, allowing the description of solids of arbitrarily complex shape.