论文标题
泰勒系列陆军电导系列
Taylor series of Landauer conductance
论文作者
论文摘要
在本文中,我们提出了一种方法,以计算一般的多性紧密紧密结合系统中确切的Taylor系列散射矩阵以进行任意阶,这使我们能够找到介质系统中Landauer电导的泰勒膨胀。该方法基于递归散射矩阵方法(RSMM),该方法允许我们从其子系统的散射矩阵中找到系统的散射矩阵。遵循自动分化的思想,我们确定了基质泰勒膨胀的总和,产物,逆和对角线化的表达式,并将其用于RSMM中,以找到Taylor系列的一系列散射矩阵。通过获得位点缺陷和石墨烯纳米收缩的原子链的传输功能来验证该方法。最后,提出了对这些泰勒扩展的收敛半径和误差估计的分析。
In this paper, we propose a method to calculate the exact Taylor series of the scattering matrix in general multiterminal tight-binding systems to arbitrary order N, which allows us to find the Taylor expansion of Landauer conductance in mesoscopic systems. The method is based on the recursive scattering matrix method (RSMM) that permits us to find the scattering matrix of a system from the scattering matrices of its subsystems. Following ideas of automatic differentiation, we determine expressions for the sum, product, inverse, and diagonalization of a matrix Taylor expansion, and use them into the RSMM to find Taylor series of scattering matrices. The method is validated by obtaining the transmission function of atomic chains with site defects and graphene nanoconstrictions. Finally, an analysis of convergence radius and error estimations of these Taylor expansions is presented.