论文标题

通勤环上的模块的本地自由基

The locally nilradical for modules over commutative rings

论文作者

Kyomuhangi, Annet, Ssevviiri, David

论文摘要

让$ r $为换向的Unital环,在R中为$ a \。 $aγ_{a}( - )$是扭转函数(也称为截面函数)和BAER的下尼尔自由基的概括。建立了函数$aγ_{a}( - )$的几种局部全球属性。作为一种应用,获得了有关$ r $ $模型的结果,并推导迄今未知的环理论自由基以及结构定理。

Let $R$ be a commutative unital ring and $a\in R.$ We introduce and study properties of a functor $aΓ_{a}(-),$ called the locally nilradical on the category of $R$-modules. $aΓ_{a}(-)$ is a generalisation of both the torsion functor (also called section functor) and Baer's lower nilradical for modules. Several local-global properties of the functor $aΓ_{a}(-)$ are established. As an application, results about reduced $R$-modules are obtained and hitherto unknown ring theoretic radicals as well as structural theorems are deduced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源