论文标题
降低参数空间中运动原始的尺寸
Dimensionality Reduction of Movement Primitives in Parameter Space
论文作者
论文摘要
运动原语是现实世界机器人技术的重要政策类别。但是,其参数化的高维度使策略优化在样本和计算方面都昂贵。有效地表示运动原语,可以促进机器学习技术(例如增强机器人技术)的应用。运动,尤其是在高度冗余的运动结构中,在配置空间中表现出很高的相关性。由于这些原因,先前的工作主要集中于在配置空间中降低维度的应用。在本文中,我们调查了降低参数空间中的尺寸降低的应用,从而识别主要运动。所得的方法富含对参数的概率处理,从而遗传了概率运动原语的所有特性。我们在真正的机器人任务和复杂人类运动的数据库上测试了所提出的技术。经验分析表明,参数空间的维度降低比在配置空间中更有效,因为它可以以显着降低参数来表示运动。
Movement primitives are an important policy class for real-world robotics. However, the high dimensionality of their parametrization makes the policy optimization expensive both in terms of samples and computation. Enabling an efficient representation of movement primitives facilitates the application of machine learning techniques such as reinforcement on robotics. Motions, especially in highly redundant kinematic structures, exhibit high correlation in the configuration space. For these reasons, prior work has mainly focused on the application of dimensionality reduction techniques in the configuration space. In this paper, we investigate the application of dimensionality reduction in the parameter space, identifying principal movements. The resulting approach is enriched with a probabilistic treatment of the parameters, inheriting all the properties of the Probabilistic Movement Primitives. We test the proposed technique both on a real robotic task and on a database of complex human movements. The empirical analysis shows that the dimensionality reduction in parameter space is more effective than in configuration space, as it enables the representation of the movements with a significant reduction of parameters.