论文标题

最大集团在类似磁盘的交叉图中

Maximum Clique in Disk-Like Intersection Graphs

论文作者

Bonnet, Édouard, Grelier, Nicolas, Miltzow, Tillmann

论文摘要

我们研究了平面中凸对象的交点图中最大集团的复杂性。在算法侧,我们扩展了单位磁盘[Clark '90,Raghavan和Spinrad '03]的多项式时间算法,以翻译任何固定凸集。我们还概括了磁盘的有效多项式近似方案(EPTAS)和次指数算法[Bonnet等。 '18,Bonamy等。 '18]到固定的中央对称凸组的同型。关于该主题的主要开放问题是磁盘图中最大集团的复杂性。尚不清楚这个问题是否是NP-HARD。我们观察到,到目前为止,在相交图类中最大值的所有硬度证明$ \ MATHCAL I $沿着同一条道路。他们表明,对于每个大型类$ \ Mathcal c $的每个图$ g $,$ g $的均匀分区的补充属于交叉点$ \ Mathcal i $。然后,他们得出结论,将最大独立设置在类$ \ Mathcal c $上的硬度召唤,并且偶数分区保留了这种硬度的事实。但是,有强有力的证据表明这种方法不能用于磁盘图[Bonnet等。 '18]。我们建议一种新方法,基于一个问题,即我们将最大间隔置换回避避免,我们证明这不太可能具有次指数时间近似方案。我们将这些硬度转移到可以是半平面(或单位磁盘)或轴平行矩形的对象的交点图中。这个问题不适合先前的方法。我们希望最大间隔置换量的缩小(仅仅是NP-HARD)变体可以帮助您在磁盘案例上取得进展,例如,通过显示(convex)伪盘的NP硬度。

We study the complexity of Maximum Clique in intersection graphs of convex objects in the plane. On the algorithmic side, we extend the polynomial-time algorithm for unit disks [Clark '90, Raghavan and Spinrad '03] to translates of any fixed convex set. We also generalize the efficient polynomial-time approximation scheme (EPTAS) and subexponential algorithm for disks [Bonnet et al. '18, Bonamy et al. '18] to homothets of a fixed centrally symmetric convex set. The main open question on that topic is the complexity of Maximum Clique in disk graphs. It is not known whether this problem is NP-hard. We observe that, so far, all the hardness proofs for Maximum Clique in intersection graph classes $\mathcal I$ follow the same road. They show that, for every graph $G$ of a large-enough class $\mathcal C$, the complement of an even subdivision of $G$ belongs to the intersection class $\mathcal I$. Then they conclude invoking the hardness of Maximum Independent Set on the class $\mathcal C$, and the fact that the even subdivision preserves that hardness. However there is a strong evidence that this approach cannot work for disk graphs [Bonnet et al. '18]. We suggest a new approach, based on a problem that we dub Max Interval Permutation Avoidance, which we prove unlikely to have a subexponential-time approximation scheme. We transfer that hardness to Maximum Clique in intersection graphs of objects which can be either half-planes (or unit disks) or axis-parallel rectangles. That problem is not amenable to the previous approach. We hope that a scaled down (merely NP-hard) variant of Max Interval Permutation Avoidance could help making progress on the disk case, for instance by showing the NP-hardness for (convex) pseudo-disks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源