论文标题
使用Wasserstein度量
Regularized Variational Data Assimilation for Bias Treatment using the Wasserstein Metric
论文作者
论文摘要
本文提出了一种新的变分数据同化(VDA)方法,用于在模型输出和观察结果中形式处理偏差。这种方法依赖于源于最佳质量运输理论的瓦斯坦恒星度量,以惩罚分析状态的概率直方图与先验参考数据集之间的距离,这可能是不确定的,但比模型和观察结果更少,但偏见较少。与以前的偏见VDA方法不同,新的Wasserstein Metric VDA(WM-VDA)通过在概率域中吸收参考数据并可以完全恢复分析状态的概率来完全处理模型中未知幅度和符号的系统偏差。 WM-VDA的性能与一阶线性动力学和混乱的Lorenz吸引子上经典的三维VDA(3D-VAR)方案进行了比较。在模型和观察结果中的正系统偏见下,我们始终显示出预测偏置和无偏的均方根误差的显着降低。
This paper presents a new variational data assimilation (VDA) approach for the formal treatment of bias in both model outputs and observations. This approach relies on the Wasserstein metric stemming from the theory of optimal mass transport to penalize the distance between the probability histograms of the analysis state and an a priori reference dataset, which is likely to be more uncertain but less biased than both model and observations. Unlike previous bias-aware VDA approaches, the new Wasserstein metric VDA (WM-VDA) dynamically treats systematic biases of unknown magnitude and sign in both model and observations through assimilation of the reference data in the probability domain and can fully recover the probability histogram of the analysis state. The performance of WM-VDA is compared with the classic three-dimensional VDA (3D-Var) scheme on first-order linear dynamics and the chaotic Lorenz attractor. Under positive systematic biases in both model and observations, we consistently demonstrate a significant reduction in the forecast bias and unbiased root mean squared error.