论文标题
凸体的距离功能和象征性的复曲面歧管
Distance functions on convex bodies and symplectic toric manifolds
论文作者
论文摘要
在本文中,我们讨论了凸体集合的三个距离函数。特别是我们研究了delzant多型的收敛,它们是象征性复曲面几何形状中的基本对象。通过使用这些观测值,我们将相对于Gromov-Hausdorff距离得出一些收敛定理。
In this paper we discuss three distance functions on the set of convex bodies. In particular we study the convergence of Delzant polytopes, which are fundamental objects in symplectic toric geometry. By using these observations, we derive some convergence theorems for symplectic toric manifolds with respect to the Gromov-Hausdorff distance.