论文标题

PUSHNET:高效和适应性神经信息传递

PushNet: Efficient and Adaptive Neural Message Passing

论文作者

Busch, Julian, Pi, Jiaxing, Seidl, Thomas

论文摘要

消息传递神经网络最近已演变成一种最新的图表中表示方法。现有方法在随后的多个回合中执行同步消息传递,因此遭受了各种缺点:传播方案不灵活,因为它们仅限于$ k $ - 霍普社区,并且对信息传播的实际需求不敏感。此外,远程依赖性不能充分建模,并且学习的表示基于固定位置的相关性。这些问题阻止了现有方法在预测性能方面发挥其全部潜力。取而代之的是,我们考虑了一种新颖的异步消息传递方法,其中仅沿着最相关的边缘推动信息,直到收敛为止。我们提出的算法可以等效地将其作为单个同步消息传递使用合适的邻里功能,从而在解决其中心问题的同时共享现有方法的优势。由此产生的神经网络利用了从有意义的稀疏节点社区得出的节点自适应接受场。此外,通过学习和结合不同尺寸的社区的节点表示形式,我们的模型能够捕获多个尺度上的相关性。我们进一步提出了具有不同电感偏置的基本模型的变体。经过严格的评估协议,在五个现实世界数据集上的半监督节点分类提供了经验结果。我们发现,就准确性而言,我们的模型在所有数据集上都优于所有数据集中的竞争对手。在某些情况下,我们的模型还提供更快的运行时。

Message passing neural networks have recently evolved into a state-of-the-art approach to representation learning on graphs. Existing methods perform synchronous message passing along all edges in multiple subsequent rounds and consequently suffer from various shortcomings: Propagation schemes are inflexible since they are restricted to $k$-hop neighborhoods and insensitive to actual demands of information propagation. Further, long-range dependencies cannot be modeled adequately and learned representations are based on correlations of fixed locality. These issues prevent existing methods from reaching their full potential in terms of prediction performance. Instead, we consider a novel asynchronous message passing approach where information is pushed only along the most relevant edges until convergence. Our proposed algorithm can equivalently be formulated as a single synchronous message passing iteration using a suitable neighborhood function, thus sharing the advantages of existing methods while addressing their central issues. The resulting neural network utilizes a node-adaptive receptive field derived from meaningful sparse node neighborhoods. In addition, by learning and combining node representations over differently sized neighborhoods, our model is able to capture correlations on multiple scales. We further propose variants of our base model with different inductive bias. Empirical results are provided for semi-supervised node classification on five real-world datasets following a rigorous evaluation protocol. We find that our models outperform competitors on all datasets in terms of accuracy with statistical significance. In some cases, our models additionally provide faster runtime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源