论文标题
两个Coniveau过滤
Two coniveau filtrations
论文作者
论文摘要
如果在封闭的封闭子的封闭子变量中消失的coniveau $ n $,则具有平滑的复杂多种尺寸$ n $的共同体学课程,并具有Codimension $ \ geq c $的封闭子变量,并且具有强大的Coniveau $ \ geq c $,如果它是由pusherforward源于ploseement $ \ leq n-c $ flopection from cuplforward的适当推动力。我们表明,这两个概念一般都不同,包括平滑投射品种的整体类别和平滑开放品种的理性类别。
A cohomology class of a smooth complex variety of dimension $n$ has coniveau $\geq c$ if it vanishes in the complement of a closed subvariety of codimension $\geq c$, and has strong coniveau $\geq c$ if it comes by proper pushforward from the cohomology of a smooth variety of dimension $\leq n-c$. We show that these two notions differ in general, both for integral classes on smooth projective varieties and for rational classes on smooth open varieties.