论文标题

中位字符串问题的枢轴选择

Pivot Selection for Median String Problem

论文作者

Mirabal, Pedro, Abreu, José, Pedreira, Oscar

论文摘要

中间的字符串问题是在Levenshtein距离下的W [1] - hard,因此使用了近似启发式方法。在比率近似准确性/收敛速度方面,基于扰动的启发式方法已被证明非常有竞争力。但是,计算负担随着集合的大小而增加。在本文中,我们通过选择代表性元素的子集(即枢轴)来探讨减少问题大小的想法,即用于计算近似中位数而不是整个集合的枢轴。我们旨在通过减少问题大小的同时达到相似的近似准确性来减少计算时间。我们解释了如何找到这些枢轴以及如何从中计算中位字符串。对常用测试数据的结果表明,我们的方法可以将计算要求(以计算的编辑距离来衡量)$ 8 $ \%,并且近似准确性与最新的启发式状态一样好。 这项工作得到了Conicyt-Pcha/doctorado Nacional的部分支持/$ 2014-63140074 $通过博士学位。奖学金; CatólicaDelaSantísimaConcepción大学通过研究项目DIN-01/2016;欧盟的Horizo​​n 2020根据MarieSkłodowska-Curie赠款协议$ 690941 $;千年基础研究研究所(IMFD); Fondecyt-Conicyt赠款编号$ 1170497 $;对于O. Pedreira,Xunta de Galicia/​​feder-ue参考。 CSI ED431G/01和GRC:ED431C 2017/58。

The Median String Problem is W[1]-Hard under the Levenshtein distance, thus, approximation heuristics are used. Perturbation-based heuristics have been proved to be very competitive as regards the ratio approximation accuracy/convergence speed. However, the computational burden increase with the size of the set. In this paper, we explore the idea of reducing the size of the problem by selecting a subset of representative elements, i.e. pivots, that are used to compute the approximate median instead of the whole set. We aim to reduce the computation time through a reduction of the problem size while achieving similar approximation accuracy. We explain how we find those pivots and how to compute the median string from them. Results on commonly used test data suggest that our approach can reduce the computational requirements (measured in computed edit distances) by $8$\% with approximation accuracy as good as the state of the art heuristic. This work has been supported in part by CONICYT-PCHA/Doctorado Nacional/$2014-63140074$ through a Ph.D. Scholarship; Universidad Católica de la Santísima Concepción through the research project DIN-01/2016; European Union's Horizon 2020 under the Marie Skłodowska-Curie grant agreement $690941$; Millennium Institute for Foundational Research on Data (IMFD); FONDECYT-CONICYT grant number $1170497$; and for O. Pedreira, Xunta de Galicia/FEDER-UE refs. CSI ED431G/01 and GRC: ED431C 2017/58.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源