论文标题
非平面线圈绕角优化,以与非绝缘高温超导磁体的兼容性
Non-Planar Coil Winding Angle Optimization for Compatibility with Non-Insulated High-Temperature Superconducting Magnets
论文作者
论文摘要
高温超导体(HTS)的快速新兴技术为开发非平面非绝缘HTS磁铁开发了新的机会。这种类型的HTS磁铁通过其简单性,鲁棒性提供了吸引人的功能,并且非常适合适度尺寸的稳态应用,例如中尺度恒星剂。在非平面线圈应用中,HTS磁带可能会受到严重的次要轴弯曲应变($ε_{bend} $),扭转菌株($ε_{tor} $)和横向磁场组件($ b_ \ p_ \ perp $),所有这些都可能限制磁铁操作空间。这里提出了一种新型的绕组角度优化方法,以克服这些局限性。本质上,此方法:1)沿输入线圈丝状轨迹计算峰值ε的峰值和b \ perp,2)定义一个成本函数,然后定义一个包括张力的链接来定义一个绕组角度来定义$ε$ tor并降低$ε$ tor并优化εbendand $ b_ $ $ $ $ $ $成本。由于存在应变限制,即使没有$ b_ \ perp $,因此此优化能够评估对任意非平面非构造HTS COIL的最小可构建大小。该优化发现,对于标准的4毫米宽HTS磁带,现有的HSX,NCSX和W7 -X恒星几何形状的最小尺寸线圈约为0.3-0.5 m的半径。对于大于此尺寸的线圈,允许有限的(但可以容忍)应变允许减少$ b_ \ perp $。这样可以减少实现给定设计磁场所需的HTS胶带长度,或者等效地增加了固定HTS胶带长度的可实现的磁场。还讨论了优化优化恒星凝胶以进一步简化与非绝缘HTS磁体的兼容性的不同考虑因素。
The rapidly emerging technology of high-temperature superconductors (HTS) opens new opportunities for the development of non-planar non-insulated HTS magnets. This type of HTS magnet offers attractive features via its simplicity, robustness, and is well-suited for modest size steady-state applications such as a mid-scale stellarator. In non-planar coil applications the HTS tape may be subject to severe minor-axis bending strain ($ε_{bend}$), torsional strains ($ε_{tor}$) and transverse magnetic field components ($B_\perp$), all of which can limit the magnet operating space. A novel method of winding angle optimization is here presented to overcome these limitations. Essentially, this method: 1) calculates the peak εbend and B\perp for arbitary winding angle along an input coil filamentary trajectory, 2) defines a cost function including both, and then 3) uses tensioned splines to define a winding angle that reduces $ε$tor and optimizes the εbend and $B_\perp$ cost function. As strain limits are present even without $B_\perp$, this optimization is able to provide an assessment of the minimimum buildable size of an arbitrary non-planar non-insulating HTS coil. This optimization finds that for standard 4 mm wide HTS tapes the minimum size coils of the existing HSX, NCSX, and W7-X stellarator geometries are around 0.3 - 0.5 m in radius. For coils larger than this size, permitting a finite (yet tolerable) strain allows reduction of $B_\perp$. This enables a reduction of the HTS tape length required to achieve a given design magnetic field or equivalently an increase in the achievable magnetic field for fixed HTS tape length. The distinct considerations for optimizing a stellarator coilset to further ease compatibility with non-insulated HTS magnets are also discussed.