论文标题

贝叶斯推断辅助的多功能原子测定法

Versatile Atomic Magnetometry Assisted by Bayesian Inference

论文作者

Puebla, R., Ban, Y., Haase, J. F., Plenio, M. B., Paternostro, M., Casanova, J.

论文摘要

量子传感器通常将外部场转换为周期性响应,然后通过在傅立叶空间中进行的分析来确定频率。这允许对表征外部信号的参数进行线性推断。但是,实际上,量子传感器只能在狭窄范围的幅度和频率范围内检测场。偏离该范围,以及显着的噪声源和短时检测时间的存在,导致传感器响应与目标场之间的线性关系丧失,从而限制了传感器的工作状态。在这里,我们通过贝叶斯推理方法来应对这些挑战,该方法可以宽容与传感器所需的周期性响应有强大的偏差,即使测量数量非常有限,也能够提供可靠的估计。我们演示了$^{171} $ yb $^{+} $ trapped-ion量子传感器的方法,但强调了这种方法对不同系统的一般适用性。

Quantum sensors typically translate external fields into a periodic response whose frequency is then determined by analyses performed in Fourier space. This allows for a linear inference of the parameters that characterize external signals. In practice, however, quantum sensors are able to detect fields only in a narrow range of amplitudes and frequencies. A departure from this range, as well as the presence of significant noise sources and short detection times, lead to a loss of the linear relationship between the response of the sensor and the target field, thus limiting the working regime of the sensor. Here we address these challenges by means of a Bayesian inference approach that is tolerant to strong deviations from desired periodic responses of the sensor and is able to provide reliable estimates even with a very limited number of measurements. We demonstrate our method for an $^{171}$Yb$^{+}$ trapped-ion quantum sensor but stress the general applicability of this approach to different systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源