论文标题
在电容耦合的flopping模式旋转Qubits中可编程的两分门
Programmable two-qubit gates in capacitively coupled flopping-mode spin qubits
论文作者
论文摘要
栅极定义的半导体量子点的最新成就加强了基于自旋的量子计算机的概念,该量子计算机由局部连接的量子台的节点组成,这些量子通过超导电路谐振光子相互通信。在这项工作中,我们从理论上演示了在这种基于自旋的量子计算机相同节点内定义的相邻自旋矩之间的多功能量子门。通过电子旋转在磁场梯度中移动的电子旋转获得的电偶极子,这使得强耦合到谐振器光子和低功率自旋控制。在这里,我们表明,这种flopping模式旋转量子标式还提供了编程多个两倍大门的可调节性。由于这些量子位之间的电容耦合带来了额外的脱位,因此我们在最直接可能的实验实现中计算了不同两倍大门的估计不忠。
Recent achievements in the field of gate defined semiconductor quantum dots reinforce the concept of a spin-based quantum computer consisting of nodes of locally connected qubits which communicate with each other via superconducting circuit resonator photons. In this work we theoretically demonstrate a versatile set of quantum gates between adjacent spin qubits defined in semiconductor quantum dots situated within the same node of such a spin-based quantum computer. The electric dipole acquired by the spin of an electron that moves across a double quantum dot potential in a magnetic field gradient has enabled strong coupling to resonator photons and low-power spin control. Here we show that this flopping-mode spin qubit also provides with the tunability to program multiple two-qubit gates. Since the capacitive coupling between these qubits brings about additional dephasing, we calculate the estimated infidelity of different two-qubit gates in the most immediate possible experimental realizations.