论文标题

复合分子的强场电离

Strong-field ionization of complex molecules

论文作者

Wiese, Joss, Onvlee, Jolijn, Trippel, Sebastian, Küpper, Jochen

论文摘要

原型生物分子吲哚的强场光电子动量成像以实验和计算方法的结合分离。在实验上,对分子的强大控制使得能够在分子框架中获得光电子动量分布,从而获得了明确的,狭窄的入射强度范围。基于绝热隧道理论的新型,高效的半经典模拟设置定量再现了这些结果。共同的实验和计算揭示了渐近动量分布中的全息结构,发现敏感取决于分子框架的比对。我们确定了在离子化过程的第一步中塑造光电子波袋的必需分子特性,并在随后的连续元动力学过程中对阳离子进行了量子化精确的描述。分子离子对激光电场的极化的详细建模,可以模拟激光诱导的电子衍射,从大且复杂的分子中,并在半经典轨迹方面对光电子的动力学提供了充分的见解。这为揭开飞秒时间尺度上生物分子系统的强场衍射成像提供了计算手段。

Strong-field photoelectron momentum imaging of the prototypical biomolecule indole was disentangled in a combined experimental and computational approach. Experimentally, strong control over the molecules enabled the acquisition of photoelectron momentum distributions in the molecular frame for a well-defined, narrow range of incident intensities. A novel, highly efficient semiclassical simulation setup based on the adiabatic tunneling theory quantitatively reproduced these results. Jointly, experiment and computations revealed holographic structures in the asymptotic momentum distributions, which were found to sensitively depend on the alignment of the molecular frame. We identified the essential molecular properties that shape the photoelectron wavepacket in the first step of the ionization process and employ a quantum-chemically exact description of the cation during the subsequent continuum dynamics. The detailed modeling of the molecular ion, which accounts for its polarization by the laser-electric field, enables the simulation of laser-induced electron diffraction off large and complex molecules and provides full insight into the photoelectron's dynamics in terms of semiclassical trajectories. This provides the computational means to unravel strong-field diffractive imaging of biomolecular systems on femtosecond time scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源