论文标题

Proxima Centauri B:在大气生物签名研究中包括宇宙射线诱导的化学的有力案例

Proxima Centauri b: A Strong Case for including Cosmic-Ray-induced Chemistry in Atmospheric Biosignature Studies

论文作者

Scheucher, M., Herbst, K., Schmidt, V., Grenfell, J. L., Schreier, F., Banjac, S., Heber, B., Rauer, H., Sinnhuber, M.

论文摘要

由于其类似地球的最小质量为1.27 m $ _ {\ text {e}} $及其与我们的太阳系的近距离,因此,Proxima Centauri B是可居住性研究的最有趣的系外行星之一。它的寄主恒星Proxima Centauri是一颗强烈的烈性恒星,预计该恒星为潜在可居住的行星提供了非常敌对的环境。假设在高恒星粒子轰炸下具有类似地球的大气层,我们对Proxima Centauri B进行了一项可居住性研究,重点是光谱传递特征。我们采用了广泛的模型套件来计算恒星颗粒的能量光谱,它们穿越行星磁层,电离层和大气的旅程,最终提供了行星气候和光谱特征,如Herbst等人所述。 (2019)。我们的结果表明,通过限制CH $ _4 $ $ _4 $的量,与事件恒星能量通量一起,高颗粒流入可以使行星有效地加热到温带气候中,否则,否则,否则将在M-Star周围的此类行星中进入反绿屋。我们确定了一些与未来光谱观察相关的关键光谱功能:首先,没有$ _2 $成为可见的主要吸收剂,这极大地影响了瑞利斜坡。其次,h $ _2 $ o的功能可以用ch $ _4 $(接近红外线)和Co $ _2 $(中红外)掩盖,使其在传输方面不可检测。第三,o $ _3 $被销毁,而不是$ _3 $的功能在中期至远红外清晰可见。最后,假设大气中的Co $ _2 $的百分之几,Co $ _2 $在5.3 $ $ $ m处的吸收变得很重要(对于耀斑和非闪光案例),与地球大气中的耀斑相关的无特征与耀斑相关。

Due to its Earth-like minimum mass of 1.27 M$_{\text{E}}$ and its close proximity to our Solar system, Proxima Centauri b is one of the most interesting exoplanets for habitability studies. Its host star, Proxima Centauri, is however a strongly flaring star, which is expected to provide a very hostile environment for potentially habitable planets. We perform a habitability study of Proxima Centauri b assuming an Earth-like atmosphere under high stellar particle bombardment, with a focus on spectral transmission features. We employ our extensive model suite calculating energy spectra of stellar particles, their journey through the planetary magnetosphere, ionosphere, and atmosphere, ultimately providing planetary climate and spectral characteristics, as outlined in Herbst et al. (2019). Our results suggest that together with the incident stellar energy flux, high particle influxes can lead to efficient heating of the planet well into temperate climates, by limiting CH$_4$ amounts, which would otherwise run into anti-greenhouse for such planets around M-stars. We identify some key spectral features relevant for future spectral observations: First, NO$_2$ becomes the major absorber in the visible, which greatly impacts the Rayleigh slope. Second, H$_2$O features can be masked by CH$_4$ (near infra-red) and CO$_2$ (mid to far infra-red), making them non-detectable in transmission. Third, O$_3$ is destroyed and instead HNO$_3$ features become clearly visible in the mid to far infra-red. Lastly, assuming a few percent of CO$_2$ in the atmosphere, CO$_2$ absorption at 5.3 $μ$m becomes significant (for flare and non-flare cases), strongly overlapping with a flare related NO feature in Earth's atmosphere.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源