论文标题
不对称获得深度图像压缩,并适应连续速率
Asymmetric Gained Deep Image Compression With Continuous Rate Adaptation
论文作者
论文摘要
随着深度学习技术的发展,深度学习与图像压缩的结合引起了很多关注。最近,学到的图像压缩方法在速率绩效方面超出了其经典对应物。但是,连续的速率适应仍然是一个悬而未决的问题。一些学到的图像压缩方法将多个网络用于多个速率,而另一些图像压缩方法则使用一个单个模型,而牺牲了计算复杂性的增加和性能下降。在本文中,我们提出了一个可调节的速率可调节的图像压缩框架,不对称获得了变异自动编码器(AG-VAE)。 AG-VAE利用一对增益单元在一个单个模型中使用可忽略的附加计算来实现离散率适应。然后,通过使用指数插值,可以在不损害性能的情况下实现连续速率适应。此外,我们提出了不对称的高斯熵模型,以进行更准确的熵估计。详尽的实验表明,与经典图像编解码器相比,我们的方法通过SOTA学习的图像压缩方法实现了可比的定量性能,并且定性性能更好。在消融研究中,我们证实了增益单元和不对称高斯熵模型的有用性和优越性。
With the development of deep learning techniques, the combination of deep learning with image compression has drawn lots of attention. Recently, learned image compression methods had exceeded their classical counterparts in terms of rate-distortion performance. However, continuous rate adaptation remains an open question. Some learned image compression methods use multiple networks for multiple rates, while others use one single model at the expense of computational complexity increase and performance degradation. In this paper, we propose a continuously rate adjustable learned image compression framework, Asymmetric Gained Variational Autoencoder (AG-VAE). AG-VAE utilizes a pair of gain units to achieve discrete rate adaptation in one single model with a negligible additional computation. Then, by using exponential interpolation, continuous rate adaptation is achieved without compromising performance. Besides, we propose the asymmetric Gaussian entropy model for more accurate entropy estimation. Exhaustive experiments show that our method achieves comparable quantitative performance with SOTA learned image compression methods and better qualitative performance than classical image codecs. In the ablation study, we confirm the usefulness and superiority of gain units and the asymmetric Gaussian entropy model.