论文标题

没有嵌入的特征值用于哈密顿量,带有交叉磁场和电场

Absence of embedded eigenvalues for Hamiltonian with crossed magnetic and electric fields

论文作者

Dimassi, Mouez, Kawamoto, Masaki, Petkov, Vesselin

论文摘要

在存在均质电场$ {\ bf e} $的情况下,以及均质的垂直磁场$ {\ bf b} $,这是$ {\ mathbb r}^2 $在$ {\ mathbb r}^2 $上移动的量子粒子的经典轨迹,而漂移速度$α$ the velocity $α$ perpendiculic perpendicular perpendicular to perpendicular con and perpendicularss conthicularssssssssssssss。对于这种汉密尔顿人来说,已经猜想了扰动的哈密顿官的嵌入特征值。在本文中,人们证明了对扰动$ v(x,y)$的猜想,这些构想在漂移速度方向上具有足够的支持。

In the presence of the homogeneous electric field ${\bf E}$ and the homogeneous perpendicular magnetic field ${\bf B}$, the classical trajectory of a quantum particle on ${\mathbb R}^2$ moves with drift velocity $α$ which is perpendicular to the electric and magnetic fields. For such Hamiltonians the absence of the embedded eigenvalues of perturbed Hamiltonian has been conjectured. In this paper one proves this conjecture for the perturbations $V(x, y)$ which have sufficiently small support in direction of drift velocity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源