论文标题

无净化定理

No-go Theorem of Purification

论文作者

Raeisi, Sadegh

论文摘要

香农的压缩界限是压缩量子信息的关键限制之一。在这里,我们表明,压缩操作的单位性在压缩上施加了新的界限,比香农的压缩结合更具限制。这转化为纯化量子状态的无关定理。对于两个Quibit系统的特定情况,我们的结果表明,不可能将纯度提取到超出个体纯度的最大性。我们表明,这种限制会导致热浴算法冷却技术的冷却极限。我们将压缩操作单位性在两个定理中施加的局限性正式化,并使用定理表明单位性的局限性导致热浴算法冷却的冷却极限。为此,我们引入了一种新的最佳冷却技术,并表明,如果没有统一操作的局限性,新的冷却技术将超过热浴算法冷却的极限。这项工作为理解动态冷却的局限性开辟了新的途径。

The Shannon's bound for compression is one of the key restrictions for the compression of quantum information. Here we show that the unitarity of the compression operation imposes new bounds on the compression that are more limiting than Shannon's compression bound. This translates to a no-go theorem for the purification of quantum states. For a specific case of a two-qubit system, our results indicate that it is not possible to distill purity beyond the maximum of the individual purities. We show that this restriction results in the cooling limit of the heat-bath algorithmic cooling techniques. We formalize the limitations imposed by the unitarity of the compression operation in two theorems and use the theorems to show that the limitations of unitarity lead to the cooling limit of heat-bath algorithmic cooling. To this end, we introduce a new optimal cooling technique and show that without the limitations of the unitary operations, the new cooling technique would have exceeded the limit of Heat-bath algorithmic cooling. This work opens up new avenues to understanding the limits of dynamic cooling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源