论文标题

马尔可夫依赖性下的大规模收缩估计

Large-Scale Shrinkage Estimation under Markovian Dependence

论文作者

Gang, Bowen, Mukherjee, Gourab, Sun, Wenguang

论文摘要

我们考虑从隐藏的马尔可夫模型生成的一系列相关参数序列的估计问题。基于观察到这种序列模型的观测噪声向量的观测值,我们考虑对所有参数的同时估计,无论其在平方误差损失下它们的隐藏状态如何。我们研究了统计收缩的作用,以改善这些相关参数的估计。对未知基础隐藏的马尔可夫模型的分布特性完全不可知,我们开发了一种新型的非参数收缩算法。我们提出的方法优雅地结合了\ textit {tweedie}基于基于马尔可夫依赖下隐藏状态的基于基于的非参数收缩思想。基于广泛的数值实验,我们建立了优越的性能,我们所提出的算法与基于隐藏的Markov模型中使用的基于非冲突的最新参数以及非参数算法相比。我们提供方法论的决策理论特性,并在独立性下建立的流行收缩方法上表现出增强的功效。我们证明了我们的方法在现实世界数据集上的应用,用于分析诸如搜索趋势和失业率之类的时间依赖的社会和经济指标,并估算了空间依赖的拷贝数变化。

We consider the problem of simultaneous estimation of a sequence of dependent parameters that are generated from a hidden Markov model. Based on observing a noise contaminated vector of observations from such a sequence model, we consider simultaneous estimation of all the parameters irrespective of their hidden states under square error loss. We study the roles of statistical shrinkage for improved estimation of these dependent parameters. Being completely agnostic on the distributional properties of the unknown underlying Hidden Markov model, we develop a novel non-parametric shrinkage algorithm. Our proposed method elegantly combines \textit{Tweedie}-based non-parametric shrinkage ideas with efficient estimation of the hidden states under Markovian dependence. Based on extensive numerical experiments, we establish superior performance our our proposed algorithm compared to non-shrinkage based state-of-the-art parametric as well as non-parametric algorithms used in hidden Markov models. We provide decision theoretic properties of our methodology and exhibit its enhanced efficacy over popular shrinkage methods built under independence. We demonstrate the application of our methodology on real-world datasets for analyzing of temporally dependent social and economic indicators such as search trends and unemployment rates as well as estimating spatially dependent Copy Number Variations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源