论文标题
双曲线3个manifolds,带有大的接吻号码
Hyperbolic 3-manifolds with large kissing number
论文作者
论文摘要
在本文中,我们构造了一个非紧凑型柔软量的序列$ \ {m_i \} $,其接吻数量至少增长为$ \ mathrm {vol}(m_i)^{\ frac {\ frac {31}} {27} {27} - ε} $ for noith $ε>0 $ 0 $。这扩展了先前的结果,因为Schmutz的尺寸为$ 2 $。
In this article we construct a sequence $\{M_i\}$ of non compact finite volume hyperbolic $3$-manifolds whose kissing number grows at least as $\mathrm{vol}(M_i)^{\frac{31}{27}-ε}$ for any $ε>0$. This extends a previous result due to Schmutz in dimension $2$.