论文标题

增强同时合理函数恢复:自适应误差校正能力和应用程序的新界限

Enhancing simultaneous rational function recovery: adaptive error correction capability and new bounds for applications

论文作者

Guerrini, Eleonora, Lebreton, Romain, Zappatore, Ilaria

论文摘要

在这项工作中,我们提出了一些结果,可以改善在求解多项式线性系统的解码半径,并在情况下具有误差,其中误差是加性的,并且随机分布在有限的字段上。解码半径取决于我们要恢复的解决方案的一些界限,因此它们的高估可以显着降低我们的误差校正能力。因此,我们引入了一种可以弥合此间隙的算法,引入了一些临时参数,这些参数降低了估计分解半径与有效误差校正能力之间的差异。

In this work we present some results that allow to improve the decoding radius in solving polynomial linear systems with errors in the scenario where errors are additive and randomly distributed over a finite field. The decoding radius depends on some bounds on the solution that we want to recover, so their overestimation could significantly decrease our error correction capability. For this reason, we introduce an algorithm that can bridge this gap, introducing some ad hoc parameters that reduce the discrepancy between the estimate decoding radius and the effective error correction capability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源