论文标题

当深denoising遇到迭代阶段检索时

When deep denoising meets iterative phase retrieval

论文作者

Wang, Yaotian, Sun, Xiaohang, Fleischer, Jason W.

论文摘要

从其傅立叶强度中恢复信号是许多重要应用的基础,包括通过散射介质进行透镜成像和成像。出现噪声时,用于检索相位的常规算法会遭受损失,但在给出干净的数据时显示全局收敛。神经网络已被用来改善算法鲁棒性,但是迄今为止的努力对初始条件敏感并具有不一致的性能。在这里,我们通过逐个定态化将相位检索的迭代方法与深层DeNoiser的图像统计数据相结合。所得的方法继承了每种方法的优点,并且超过其他噪声相位检索算法。我们的工作为在常规算法中整合机器学习的约束的混合成像方法铺平了道路。

Recovering a signal from its Fourier intensity underlies many important applications, including lensless imaging and imaging through scattering media. Conventional algorithms for retrieving the phase suffer when noise is present but display global convergence when given clean data. Neural networks have been used to improve algorithm robustness, but efforts to date are sensitive to initial conditions and give inconsistent performance. Here, we combine iterative methods from phase retrieval with image statistics from deep denoisers, via regularization-by-denoising. The resulting methods inherit the advantages of each approach and outperform other noise-robust phase retrieval algorithms. Our work paves the way for hybrid imaging methods that integrate machine-learned constraints in conventional algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源