论文标题

形状工程phoxonic晶体的特性:布里鲁因·曼德尔斯坦光谱和椭圆测量学研究

Properties of Shape-Engineered Phoxonic Crystals: Brillouin-Mandelstam Spectroscopy and Ellipsometry Study

论文作者

Huang, Chun Yu Tammy, Kargar, Fariborz, Debnath, Topojit, Debnath, Bishwajit, Valentin, Michael D., Synowicki, Ron, Schoeche, Stefan, Lake, Roger K., Balandin, Alexander A.

论文摘要

我们报告了纳米级“带有帽子的柱”周期性硅结构的Brillouin-Mandelstam光谱和MUELLER基质光谱椭圆法的结果,揭示了引人入胜的语音和光子性能。从理论上讲,具有正确调整尺寸的周期性结构可以同时用作语音和光子 - 凤凰 - 晶体,从而强烈影响光 - 物质相互作用。声子状态可以通过外部边界来调节,要么是单个纳米结构中的声子限制效应的结果,也可以像人为诱导的外部周期性一样,如声音晶体中。纳米级支柱阵列的形状经过设计,以确保两种效果的相互作用。 Brillouin-Mandelstam光谱数据表明,在2 GHz到20 GHz的频率范围内,声音声子分散体的强烈扁平,并且声子波矢量延伸到高阶Brillouin区域。声子分散依赖性对支柱阵列方向的细节表明,声音声子也存在周期性调制和空间定位效应。椭圆测量数据揭示了由于支柱阵列的纳米级周期性而引起的四倍对称性的独特散射模式。我们的结果证实了纳米结构形状工程结构的双重功能,并指示了在下一代光子,光电和语音设备中微调光 - 物质相互作用的新方向。

We report the results of Brillouin-Mandelstam spectroscopy and Mueller matrix spectroscopic ellipsometry of the nanoscale "pillar with the hat" periodic silicon structures, revealing intriguing phononic and photonic properties. It has been theoretically shown that periodic structures with properly tuned dimensions can act simultaneously as phononic and photonic - phoxonic - crystals, strongly affecting the light-matter interactions. Acoustic phonon states can be tuned by external boundaries, either as a result of phonon confinement effects in individual nanostructures, or as a result of artificially induced external periodicity, as in the phononic crystals. The shape of the nanoscale pillar array was engineered to ensure the interplay of both effects. The Brillouin-Mandelstam spectroscopy data indicated strong flattening of the acoustic phonon dispersion in the frequency range from 2 GHz to 20 GHz and the phonon wave vector extending to the higher-order Brillouin zones. The specifics of the phonon dispersion dependence on the pillar arrays orientation suggest the presence of both periodic modulation and spatial localization effects for the acoustic phonons. The ellipsometry data reveal a distinct scatter pattern of four-fold symmetry due to nanoscale periodicity of the pillar arrays. Our results confirm the dual functionality of the nanostructured shape-engineered structure and indicate a possible new direction for fine-tuning the light-matter interaction in the next generation of photonic, optoelectronic, and phononic devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源