论文标题
3D拓扑绝缘子HGTE中的量子厅效应和Landau水平
Quantum Hall effect and Landau levels in the 3D topological insulator HgTe
论文作者
论文摘要
我们回顾了80 nm厚的HGTE中的低场和高场磁转移,这是一种属于强三维拓扑绝缘子类别的材料。利用顶门,可以通过狄拉克表面状态将费米水平从价带中调节到导带中,并允许在不同种类的电荷载体有助于磁通转运的情况下研究Landau量化。 Landau风扇图表,映射电导率$σ_{xx}(v_g,b)$在整个磁场 - 门电压范围内,可以根据参与载体物种的状态分为六个区域。关键发现是:(i)散装孔(自旋排放)和狄拉克表面电子(非脱位)的相互作用,在价带中以$ e_f $共存,导致奇数甚至填充因子之间的定期切换,从而使奇数甚至填充因子和奇数和什至量化的霍尔电压值之间进行了转换。 (ii)我们发现了一种类似但不太明显的行为,用于共存的狄拉克表面和传导带电子。 (iii)在大容量间隙中,在较低B处的顶表面上量化了dirac电子,而底侧的未量化的dirac电子在磁场强度上取决于给定的填充因子 - 在给定的填充因子(对于给定的填充因子)上产生量子霍尔高原值。在更强大的$ b $字段中,兰道水平的分离增加,不同载体物种之间的电荷转移在能量上变得有利,并导致形成全球(即涉及顶部和底部表面)量子霍尔状态。使用最简单的理论方法的仿真与基本的实验发现一致,从而正确描述了我们多组分荷载载流子系统各个区域中从经典到量子传输的过渡的中心特征。
We review low and high field magnetotransport in 80 nm-thick strained HgTe, a material that belongs to the class of strong three-dimensional topological insulators. Utilizing a top gate, the Fermi level can be tuned from the valence band via the Dirac surface states into the conduction band and allows studying Landau quantization in situations where different species of charge carriers contribute to magnetotransport. Landau fan charts, mapping the conductivity $ σ_{xx}(V_g, B) $ in the whole magnetic field - gate voltage range, can be divided into six areas, depending on the state of the participating carrier species. Key findings are: (i) the interplay of bulk holes (spin-degenerate) and Dirac surface electrons (non-degenerate), coexisting for $ E_F $ in the valence band, leads to a periodic switching between odd and even filling factors and thus odd and even quantized Hall voltage values. (ii) A similar though less pronounced behavior we found for coexisting Dirac surface and conduction band electrons. (iii) In the bulk gap, quantized Dirac electrons on the top-surface coexist at lower B with non-quantized ones on the bottom side, giving rise to quantum Hall plateau values depending - for a given filling factor - on the magnetic field strength. In stronger $ B $ fields, Landau level separation increases, charge transfer between different carrier species becomes energetically favorable and leads to the formation of a global (i.e. involving top and bottom surface) quantum Hall state. Simulations using the simplest possible theoretical approach are in line with the basic experimental findings, describing correctly the central features of the transitions from classical to quantum transport in the respective areas of our multicomponent charge carrier system.