论文标题
观察性的约束对元素的起源。 iii。亚chandrasekhar sn ia在银河系中Mn和Fe化学演化中的主要作用的证据
Observational constraints on the origin of the elements. III. Evidence for the dominant role of sub-Chandrasekhar SN Ia in the chemical evolution of Mn and Fe in the Galaxy
论文作者
论文摘要
在较宽的金属性范围内,锰与铁的丰度比在FE组元素的天体物理生产地点受到严格的约束。在这项工作中,我们使用银河盘和光晕恒星中的恒星以及球状簇样品的高分辨率光谱观测来研究银河系中MN的化学演化。我们的分析表明,局部热力学平衡(LTE)导致MN I和MN II线的电离平衡发生较大的失衡。 Mn I与MN II线相比,系统地产生(最高0.6个DEX)的丰度较低。非本地热力学平衡(NLTE)辐射转移满足整个金属性范围内的电离平衡,-3 <[fe/h] <-1,导致元素两个电离阶段的一致丰度。我们将NLTE丰度与使用不同型IA型和II型超新星(SN IA和SN II)产生的分类化学化学演化模型进行了比较。我们发现,可以通过假设从亚chandrasekhar(sub-ch)通道中获得显着(约75%)的SNE IA词干(〜75%)茎的良好拟合度。虽然这一比例大于早期研究(约50%)的分数,但我们注意到,我们仍然需要〜25%的近ch sne sne ia才能在[fe/h] = 0处获得太阳能[Mn/fe]。我们的新数据还表明,在低金属性下,低金属性的SN II MN产量高于文献中通常假定的。
The abundance ratios of manganese to iron in late-type stars across a wide metallicity range place tight constraints on the astrophysical production sites of Fe-group elements. In this work, we investigate the chemical evolution of Mn in the Milky Way galaxy using high-resolution spectroscopic observations of stars in the Galactic disc and halo stars, as well as a sample of globular clusters. Our analysis shows that local thermodynamic equilibrium (LTE) leads to a strong imbalance in the ionisation equilibrium of Mn I and Mn II lines. Mn I produces systematically (up to 0.6 dex) lower abundances compared to the Mn II lines. Non-local thermodynamic equilibrium (NLTE) radiative transfer satisfies the ionisation equilibrium across the entire metallicity range, -3 < [Fe/H] < -1, leading to consistent abundances from both ionisation stages of the element. We compare the NLTE abundances with Galactic Chemical Evolution models computed using different sources of type Ia and type II supernova (SN Ia and SN II) yields. We find that a good fit to our observations can be obtained by assuming that a significant (~ 75%) fraction of SNe Ia stem from a sub-Chandrasekhar (sub-Ch) channel. While this fraction is larger than that found in earlier studies (~ 50%), we note that we still require ~ 25% near-Ch SNe Ia to obtain solar [Mn/Fe] at [Fe/H] = 0. Our new data also suggest higher SN II Mn yields at low metallicity than typically assumed in the literature.