论文标题

嵌入非弧度双曲线歧管

Embedding non-arithmetic hyperbolic manifolds

论文作者

Kolpakov, Alexander, Riolo, Stefano, Slavich, Leone

论文摘要

本文表明,通过将融合到更高尺寸的双曲线歧管中获得的算术片获得的许多双曲线歧管,作为编成一个完全测量的亚策略。结果,许多gromov- pyatetski-shapiro和agolipetsky- thomson非陆上歧管嵌入了地球上。此外,我们表明,双曲线歧管的可高度性类别的数量具有代表$ \ leq v $的代表,几何界限至少为$ v^{cv} $,对于$ v $来说,$ v $足够大。

This paper shows that many hyperbolic manifolds obtained by glueing arithmetic pieces embed into higher-dimensional hyperbolic manifolds as codimension-one totally geodesic submanifolds. As a consequence, many Gromov--Pyatetski-Shapiro and Agol--Belolipetsky--Thomson non-arithmetic manifolds embed geodesically. Moreover, we show that the number of commensurability classes of hyperbolic manifolds with a representative of volume $\leq v$ that bounds geometrically is at least $v^{Cv}$, for $v$ large enough.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源