论文标题
具有噪声的广义流体动力学
Generalised hydrodynamics with dephasing noise
论文作者
论文摘要
我们考虑在存在外部去噪声的情况下,可相互作用的集成系统的不平衡动力学。在噪声的较大空间相关性的极限下,我们基于流体动力公式制定了系统动力学的精确描述。这导致了标准的广义流体动力学理论的附加术语,该理论描述了系统准粒子的动量空间中的扩散动力学,并具有时间和动量依赖性扩散常数。然后,通过与非线性Schrodinger方程的微观模拟进行比较,将我们的分析预测以经典限制为基准,显示出完美的一致性。在量子案例中,我们的预测与在可访问的时代方案中对各向异性海森贝格自旋的最新数值模拟一致,并且在小较小的时间和温度的限制下与持续性预测相符。
We consider the out-of-equilibrium dynamics of an interacting integrable system in the presence of an external dephasing noise. In the limit of large spatial correlation of the noise, we develop an exact description of the dynamics of the system based on a hydrodynamic formulation. This results in an additional term to the standard generalized hydrodynamics theory describing diffusive dynamics in the momentum space of the quasiparticles of the system, with a time- and momentum-dependent diffusion constant. Our analytical predictions are then benchmarked in the classical limit by comparison with a microscopic simulation of the non-linear Schrodinger equation, showing perfect agreement. In the quantum case, our predictions agree with state-of-the-art numerical simulations of the anisotropic Heisenberg spin in the accessible regime of times and with bosonization predictions in the limit of small dephasing times and temperatures.