论文标题
自动分化与混合物的变异推断
Automatic Differentiation Variational Inference with Mixtures
论文作者
论文摘要
自动分化变异推理(ADVI)是在机器学习中有效学习概率模型的有用工具。通常,Advi学到的后代近似后代被迫是单峰,以促进使用重新聚集技巧。在本文中,我们展示了如何使用分层抽样作为近似后部的混合物分布,并在类似于重要性加权自动编码器(IWAE)的证据上得出了新的下下限。我们表明,这种“ Siwae”比IWAE和传统Elbo都更紧密,这两者都是这种界限的特殊实例。我们从经验上验证传统的Elbo物镜会散布多模式后分布的存在,因此可能无法在潜在空间中完全捕获结构。我们的实验表明,使用SIWAE目标,编码器可以学习更复杂的分布,这些分布经常包含多模态,从而在存在不完整,有限或损坏的数据的情况下会产生更高的准确性和更好的校准。
Automatic Differentiation Variational Inference (ADVI) is a useful tool for efficiently learning probabilistic models in machine learning. Generally approximate posteriors learned by ADVI are forced to be unimodal in order to facilitate use of the reparameterization trick. In this paper, we show how stratified sampling may be used to enable mixture distributions as the approximate posterior, and derive a new lower bound on the evidence analogous to the importance weighted autoencoder (IWAE). We show that this "SIWAE" is a tighter bound than both IWAE and the traditional ELBO, both of which are special instances of this bound. We verify empirically that the traditional ELBO objective disfavors the presence of multimodal posterior distributions and may therefore not be able to fully capture structure in the latent space. Our experiments show that using the SIWAE objective allows the encoder to learn more complex distributions which regularly contain multimodality, resulting in higher accuracy and better calibration in the presence of incomplete, limited, or corrupted data.