论文标题

在快速旋转的雷利 - 纳德对流中的级联反向和流速缩放行为上

On the inverse cascade and flow speed scaling behavior in rapidly rotating Rayleigh-Bénard convection

论文作者

Maffei, S., Krouss, M. J., Julien, K., Calkins, M. A.

论文摘要

旋转的雷利 - 纳德对流对使用渐近模型进行了数值研究,该模型捕获了迅速旋转的小ekman数字限制,$ ek \ rightarrow 0 $。 prandtl编号($ pr $)和渐近缩放的雷利号($ \ widetilde {ra} = ra ek^{4/3} $,其中$ ra $是典型的瑞利号编号)。为了足够剧烈的对流,动力学级联反向导致形成深度不变的大规模涡流(LSV)。关于动能,我们发现,在所有研究的$ pr $的所有研究值中,从对流统治状态到LSV占主导地位的状态(小规模)雷诺数为$ \ widetilde {re} \ 6 $。深度平均动能与对流的动能的比率达到$ \ widetilde {re} \约24 $,然后随着$ \ widetilde {ra} $的增加而减小。 LSV的相对动能的减少与对流相关的减少与瑞利数量的增加有关。研究了对流流速的缩放行为。尽管形式的$ \ wideTilde {re} \ sim \ widetilde {ra}/pr $的线性缩放在有限的雷利号和prandtl编号的范围内观察到,但在此缩放的范围内,以$ \ \ \ widetilde {ra} $的最高访问值观察到了与此缩放的明显出发。管理方程中存在的力的计算表明,粘性力与浮力的比率是$ \ widetilde {ra} $的越来越多的函数,在研究的参数范围内接近统一。

Rotating Rayleigh-Bénard convection is investigated numerically with the use of an asymptotic model that captures the rapidly rotating, small Ekman number limit, $Ek \rightarrow 0$. The Prandtl number ($Pr$) and the asymptotically scaled Rayleigh number ($\widetilde{Ra} = Ra Ek^{4/3}$, where $Ra$ is the typical Rayleigh number) are varied systematically. For sufficiently vigorous convection, an inverse kinetic energy cascade leads to the formation of a depth-invariant large-scale vortex (LSV). With respect to the kinetic energy, we find a transition from convection dominated states to LSV dominated states at an asymptotically reduced (small-scale) Reynolds number of $\widetilde{Re} \approx 6$ for all investigated values of $Pr$. The ratio of the depth-averaged kinetic energy to the kinetic energy of the convection reaches a maximum at $\widetilde{Re} \approx 24$, then decreases as $\widetilde{Ra}$ is increased. This decrease in the relative kinetic energy of the LSV is associated with a decrease in the convective correlations with increasing Rayleigh number. The scaling behavior of the convective flow speeds is studied; although a linear scaling of the form $\widetilde{Re} \sim \widetilde{Ra}/Pr$ is observed over a limited range in Rayleigh number and Prandtl number, a clear departure from this scaling is observed at the highest accessible values of $\widetilde{Ra}$. Calculation of the forces present in the governing equations shows that the ratio of the viscous force to the buoyancy force is an increasing function of $\widetilde{Ra}$, that approaches unity over the investigated range of parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源