论文标题

使用深度学习对超低原子的单曝光吸收成像

Single-exposure absorption imaging of ultracold atoms using deep learning

论文作者

Ness, Gal, Vainbaum, Anastasiya, Shkedrov, Constantine, Florshaim, Yanay, Sagi, Yoav

论文摘要

吸收成像是超电原子实验中最常见的探测技术。标准程序涉及在连续暴露时获得的两个帧的划分,一个是带有原子吸收信号的,一个没有。一个众所周知的问题是,由于两个暴露的成像光之间的差异很小,因此最终图像中存在残留的结构化噪声。在这里,我们通过仅一次暴露进行吸收成像来解决此问题,在该吸收成像中不是第二次暴露,而是由无监督的图像完成自动编码器神经网络生成的参考框架。网络是在没有吸收信号的图像上训练的,以便仅根据环绕信号的区域中的信息来推断原子信号覆盖的噪声。我们证明了用量子退化的费米气体捕获的数据方法。所得图像中的平均残余噪声低于标准双射击技术的平均噪声。我们的方法简化了实验序列,减少了硬件要求,并可以提高提取的物理可观察物的准确性。训练有素的网络及其生成脚本可作为开源存储库(http://absdl.github.io/)提供。

Absorption imaging is the most common probing technique in experiments with ultracold atoms. The standard procedure involves the division of two frames acquired at successive exposures, one with the atomic absorption signal and one without. A well-known problem is the presence of residual structured noise in the final image, due to small differences between the imaging light in the two exposures. Here we solve this problem by performing absorption imaging with only a single exposure, where instead of a second exposure the reference frame is generated by an unsupervised image-completion autoencoder neural network. The network is trained on images without absorption signal such that it can infer the noise overlaying the atomic signal based only on the information in the region encircling the signal. We demonstrate our approach on data captured with a quantum degenerate Fermi gas. The average residual noise in the resulting images is below that of the standard double-shot technique. Our method simplifies the experimental sequence, reduces the hardware requirements, and can improve the accuracy of extracted physical observables. The trained network and its generating scripts are available as an open-source repository (http://absDL.github.io/).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源