论文标题
坚固的互动学习,以抓紧
Rigid-Soft Interactive Learning for Robust Grasping
论文作者
论文摘要
受抓握范围广泛使用的软手指的启发,我们提出了一种刚性柔软的交互式学习方法,旨在减少数据收集时间。在本文中,我们根据握把对象和目标对象之间的相互作用表面将相互作用类别分类为刚性,刚性柔软的柔软刚性。我们发现实验证据表明,抓地力和目标对象之间的相互作用类型在学习方法中起着至关重要的作用。我们使用柔软的毛绒玩具来训练,而不是日常物品,以减少集成的复杂性和计算负担,并通过将握把手指更改为柔软的,如Yale-Cmu-berkeley(YCB)对象,从而通过将握把手指更改为软手指来利用这种僵化的相互作用。通过总共进行5K拾取尝试的小数据收集,我们的结果表明,这种刚性和软刚性的相互作用是可以转移的。此外,不同抓地力类型的组合在掌握测试中显示出更好的性能。对于易于YCB对象,我们以97.5 \%的速度获得了最佳的掌握性能,对于困难的YCB对象,我们可以在使用两个柔软的手指抓手的情况下使用精确的抓握率,并使用四柔软的手指抓手来测试训练数据,并使用精确的抓握率进行测试。
Inspired by widely used soft fingers on grasping, we propose a method of rigid-soft interactive learning, aiming at reducing the time of data collection. In this paper, we classify the interaction categories into Rigid-Rigid, Rigid-Soft, Soft-Rigid according to the interaction surface between grippers and target objects. We find experimental evidence that the interaction types between grippers and target objects play an essential role in the learning methods. We use soft, stuffed toys for training, instead of everyday objects, to reduce the integration complexity and computational burden and exploit such rigid-soft interaction by changing the gripper fingers to the soft ones when dealing with rigid, daily-life items such as the Yale-CMU-Berkeley (YCB) objects. With a small data collection of 5K picking attempts in total, our results suggest that such Rigid-Soft and Soft-Rigid interactions are transferable. Moreover, the combination of different grasp types shows better performance on the grasping test. We achieve the best grasping performance at 97.5\% for easy YCB objects and 81.3\% for difficult YCB objects while using a precise grasp with a two-soft-finger gripper to collect training data and power grasp with a four-soft-finger gripper to test.