论文标题
混洗代数中的二次身份和de Bruijn公式的替代证明
A quadratic identity in the shuffle algebra and an alternative proof for de Bruijn's formula
论文作者
论文摘要
由某些迭代积分的多项式身份的促进,在晶格路径的环境中首先在[CGM20]中观察到,我们证明了在洗牌代数中具有有趣的组合身份。当在路径签名框架中解释时,它与de Bruijn的公式有着密切的联系。
Motivated by a polynomial identity of certain iterated integrals, first observed in [CGM20] in the setting of lattice paths, we prove an intriguing combinatorial identity in the shuffle algebra. It has a close connection to de Bruijn's formula when interpreted in the framework of signatures of paths.