论文标题

业余无人机检测:在强烈干扰存在下使用声学信号的机器学习方法

Amateur Drones Detection: A machine learning approach utilizing the acoustic signals in the presence of strong interference

论文作者

Uddin, Zahoor, Altaf, Muhammad, Bilal, Muhammad, Nkenyereye, Lewis, Bashir, Ali Kashif

论文摘要

由于尺寸较小,感应能力和自治性,无人驾驶汽车(UAV)在各个领域都有巨大的应用,例如遥感,导航,考古学,新闻学,环境科学和农业。但是,称为业余无人机(AMDR)的无人机部署可能会导致严重的安全威胁和对人类生活和基础设施的风险。因此,及时检测AMDR对于敏感组织,人类生活和其他重要基础设施的保护和安全至关重要。可以根据声音,视频,热频率和无线电频率使用不同的技术检测AMDR。但是,这些技术的性能在严重的大气条件下受到限制。在本文中,我们提出了独立组件分析(ICA)的有效无理的机器学习方法,以检测各种声学信号,即在实际情况下,鸟类,飞机,雷暴,雨雨,雨水,风和无人机的声音。解开信号后,通过使用ICA提取诸如MEL频率曲线系数(MFCC),功率谱密度(PSD)和均方根值(RMS)之类的特征。首先通过八度带滤光箱的信号提取PSD和PSD信号的RMS。基于上述特征,信号使用支持向量机(SVM)和K最近的邻居(KNN)进行分类,以检测AMDR的存在或不存在。该提出的技术的独特特征是在存在多个声学干扰信号的情况下一次检测单个或多个AMDR。通过广泛的模拟验证了所提出的技术,并且观察到,具有KNN的PSD的RMS值比使用KNN和SVM的MFCC更好。

Owing to small size, sensing capabilities and autonomous nature, the Unmanned Air Vehicles (UAVs) have enormous applications in various areas, e.g., remote sensing, navigation, archaeology, journalism, environmental science, and agriculture. However, the unmonitored deployment of UAVs called the amateur drones (AmDr) can lead to serious security threats and risk to human life and infrastructure. Therefore, timely detection of the AmDr is essential for the protection and security of sensitive organizations, human life and other vital infrastructure. AmDrs can be detected using different techniques based on sound, video, thermal, and radio frequencies. However, the performance of these techniques is limited in sever atmospheric conditions. In this paper, we propose an efficient unsupervise machine learning approach of independent component analysis (ICA) to detect various acoustic signals i.e., sounds of bird, airplanes, thunderstorm, rain, wind and the UAVs in practical scenario. After unmixing the signals, the features like Mel Frequency Cepstral Coefficients (MFCC), the power spectral density (PSD) and the Root Mean Square Value (RMS) of the PSD are extracted by using ICA. The PSD and the RMS of PSD signals are extracted by first passing the signals from octave band filter banks. Based on the above features the signals are classified using Support Vector Machines (SVM) and K Nearest Neighbor (KNN) to detect the presence or absence of AmDr. Unique feature of the proposed technique is the detection of a single or multiple AmDrs at a time in the presence of multiple acoustic interfering signals. The proposed technique is verified through extensive simulations and it is observed that the RMS values of PSD with KNN performs better than the MFCC with KNN and SVM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源