论文标题

可区分的因果后门发现

Differentiable Causal Backdoor Discovery

论文作者

Gultchin, Limor, Kusner, Matt J., Kanade, Varun, Silva, Ricardo

论文摘要

发现决策的因果影响对于几乎所有形式的决策至关重要。特别是,它是药物开发,制定政府政策以及实施现实世界机器学习系统时的关键数量。只有观察数据,混杂因素通常会掩盖真正的因果效应。幸运的是,在某些情况下,可以通过使用某些观察到的变量来调整混杂因素的影响来恢复因果效应。但是,如果不访问真正的因果模型,请找到此调整需要蛮力搜索。在这项工作中,我们提出了一种利用与工具相似的辅助变量的算法,以通过基于梯度的优化方法找到适当的调整。我们证明,在估计真正的因果效应的情况下,它在不了解完整的因果图的情况下,它优于实际替代方案。

Discovering the causal effect of a decision is critical to nearly all forms of decision-making. In particular, it is a key quantity in drug development, in crafting government policy, and when implementing a real-world machine learning system. Given only observational data, confounders often obscure the true causal effect. Luckily, in some cases, it is possible to recover the causal effect by using certain observed variables to adjust for the effects of confounders. However, without access to the true causal model, finding this adjustment requires brute-force search. In this work, we present an algorithm that exploits auxiliary variables, similar to instruments, in order to find an appropriate adjustment by a gradient-based optimization method. We demonstrate that it outperforms practical alternatives in estimating the true causal effect, without knowledge of the full causal graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源