论文标题

学习用生成对抗网生成时间序列的条件图

Learning to Generate Time Series Conditioned Graphs with Generative Adversarial Nets

论文作者

Yang, Shanchao, Liu, Jing, Wu, Kai, Li, Mingming

论文摘要

基于深度学习的方法已被用来建模并生成遭受不同分布的图形。但是,它们通常是基于学习和无条件的生成模型的无监督学习,或者只是基于图形上下文的条件,而这些上下文与丰富的语义节点级上下文无关。不同的是,在本文中,我们对一个名为“时间序列”的新问题感兴趣:鉴于输入多元时间序列,我们的目标是推断一个目标关系图对时间序列之间的基本相互关系建模,每个节点与每个时间序列相对应。例如,我们可以研究以某种疾病的基因调节网络中的基因调节网络之间的相互关系,该基因以其基因表达数据为条件,记录为时间序列。为了实现这一目标,我们提出了一个新颖的时间序列,有条件的图形生成产生对抗网络(TSGG-GAN)来处理富节点级上下文结构的挑战,并直接在图和时间序列之间直接测量相似之处。关于合成和现实基因调节网络数据集的广泛实验证明了所提出的TSGG-GAN的有效性和普遍性。

Deep learning based approaches have been utilized to model and generate graphs subjected to different distributions recently. However, they are typically unsupervised learning based and unconditioned generative models or simply conditioned on the graph-level contexts, which are not associated with rich semantic node-level contexts. Differently, in this paper, we are interested in a novel problem named Time Series Conditioned Graph Generation: given an input multivariate time series, we aim to infer a target relation graph modeling the underlying interrelationships between time series with each node corresponding to each time series. For example, we can study the interrelationships between genes in a gene regulatory network of a certain disease conditioned on their gene expression data recorded as time series. To achieve this, we propose a novel Time Series conditioned Graph Generation-Generative Adversarial Networks (TSGG-GAN) to handle challenges of rich node-level context structures conditioning and measuring similarities directly between graphs and time series. Extensive experiments on synthetic and real-word gene regulatory networks datasets demonstrate the effectiveness and generalizability of the proposed TSGG-GAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源