论文标题
评估WRF模型参数敏感性在印度夏季季风期间高强度降水事件的敏感性
Assessment of WRF model parameter sensitivity for high-intensity precipitation events during the Indian summer monsoon
论文作者
论文摘要
在数值天气预测模型中,许多模型参数的默认值通常是根据方案设计人员的理论或实验研究来采用的。在天气研究和预测(WRF)模型中,参数规范的规格很大程度上影响了短期预测。 WRF模型中多种参数和几个输出变量的存在使适当的参数值识别非常具有挑战性。当前研究的目的是通过识别使用全球灵敏度分析(GSA)方法强烈影响模型性能的参数来减少模型结果中的不确定性。莫里斯一步一步(护城河),GSA方法,用于识别与WRF模型的七个物理参数化方案相对应的23个选择可调参数的敏感性。评估了11个输出变量的灵敏度度量(护城河平均值和标准偏差),其中有些是表面气象变量,其余的是大气变量,这是由具有不同参数的WRF模型模拟的。这项研究认为,在印度季风和2017年的印度夏季季风(ISM)期间,在印度季风核心地区为期12个高强度的四天降水事件被考虑进行研究。在几乎所有模型输出变量的情况下,有23个参数中有6个具有高的护城河平均值,表明这些参数对模拟的结果具有相当大的影响。对于所有模型输出变量,一些参数的护城河平均值明显很小,因此与它们相关的不确定性对WRF模型性能的影响可忽略不计。该研究还介绍了对参数灵敏度趋势的物理见解。
Default values for many model parameters in Numerical Weather Prediction models are typically adopted based on theoretical or experimental investigations by scheme designers. Short-range forecasts are substantially affected by the specification of parameters in the Weather Research and Forecasting (WRF) model. The presence of a multitude of parameters and several output variables in the WRF model renders appropriate parameter value identification quite challenging. The objective of the current study is to reduce the uncertainty in the model outcomes through the recognition of parameters that strongly influence the model performance using a Global Sensitivity Analysis (GSA) method. Morris one-step-at-a-time (MOAT), GSA method, is used to identify the sensitivities of 23 chosen tunable parameters corresponding to seven physical parameterization schemes of the WRF model. The sensitivity measures (MOAT mean and standard deviation) are evaluated for eleven output variables, out of which some are surface meteorological variables and the remaining are atmospheric variables, which are simulated by the WRF model with different parameters. Twelve high-intensity four day precipitation events during the Indian summer monsoon (ISM) for the years 2015, 2016, and 2017 over the monsoon core region in India are considered for the study. Six out of 23 parameters have high MOAT mean in the case of almost all the model output variables indicating that these parameters have a considerable effect on the outcome of the simulations. MOAT mean values of a few parameters are noticeably small for all the model output variables, and thus the uncertainty associated with them has a negligible effect on the WRF model performance. The study also presents the physical insights into the trends of the parameter sensitivity.