论文标题
超级阶段对$ \ mathbf {a^2} $效果的弹性
Resilience of the superradiant phase against $\mathbf {A^2}$ effects in the quantum Rabi dimer
论文作者
论文摘要
我们探讨了将量子狂犬模型与跳跃相互作用相结合的两个站点模型的量子关键。通过分析方法和数值方法的结合,我们发现该模型即使在存在强$ \ Mathbf {A}^2 $项的情况下,该模型即使在存在强度的量子相变(QPT)中出现。在两个站点模型中,$ \ mathbf {a}^2 $项的效果可以通过跳跃的光子离定位来掩盖,并且由于$ \ mathbf {a}^2 $项和跳跃互动而产生的反向超级QPT是出现的。我们表征相图和缩放函数,并在临界点附近提取临界指数,从而确立了二阶相变的普遍行为。值得注意的是,如果更多的空腔被级联,有效的跳跃强度将增强。我们还证明,量子性兔二聚体的多Qubit对应物,即Dicke Dimer,在击败$ \ Mathbf {a}^2 $效果方面具有相同的属性。我们的工作为研究$ \ mathbf {a}^2 $项的存在提供了一种方法,并提供了研究多体系统中量子至关重要物理和量子设备的前景。
We explore the quantum criticality of a two-site model combining quantum Rabi models with hopping interaction. Through a combination of analytical and numerical approaches, we find that the model allows the appearance of a superradiant quantum phase transition (QPT) even in the presence of strong $\mathbf{A}^2$ terms, preventing single-site superradiance. In the two-site model the effect of $\mathbf{A}^2$ terms can be surmounted by the photon delocalization from hopping, and a reversed superradiant QPT occurs as a consequence of the competition between $\mathbf{A}^2$ terms and the hopping interaction. We characterize the phase diagram and scaling functions, and extract the critical exponents in the vicinity of the critical point, thus establishing the universal behavior of the second-order phase transition. Remarkably the effective hopping strength will be enhanced if more cavities are cascaded. We also prove that the multi-qubit counterpart of the quantum Rabi dimer, i.e., the Dicke dimer, has the same properties in beating the $\mathbf{A}^2$ effect. Our work provides a way to the study of phase transitions in presence of the $\mathbf{A}^2$ terms and offers the prospect of investigating quantum-criticality physics and quantum devices in many-body systems.